• 首页 首页 icon
  • 工具库 工具库 icon
    • IP查询 IP查询 icon
  • 内容库 内容库 icon
    • 快讯库 快讯库 icon
    • 精品库 精品库 icon
    • 问答库 问答库 icon
  • 更多 更多 icon
    • 服务条款 服务条款 icon

Android并发编程高级面试题汇总含详细 三

武飞扬头像
BlueSocks
帮助2

AQS原理 (小米 京东)

详细讲解

享学课堂移动互联网系统课程:架构师筑基必备技能《深入理解并发编程-AQS与JMM》

这道题想考察什么?

是否了解Java并发编程的相关知识?

考察的知识点

AQS的原理

考生应该如何回答

什么是AQS

AQS即AbstractQueuedSynchronizer,是一个用于构建锁和同步器的框架。它能降低构建锁和同步器的工作量,还可以避免处理多个位置上发生的竞争问题。在基于AQS构建的同步器中,只可能在一个时刻发生阻塞,从而降低上下文切换的开销,并提高吞吐量。

AQS核心思想是,如果被请求的共享资源空闲,那么就将当前请求资源的线程设置为有效的工作线程,将共享资源设置为锁定状态;如果共享资源被占用,就需要一定的阻塞等待唤醒机制来保证锁分配。这个机制主要用的是CLH队列的变体实现的,将暂时获取不到锁的线程加入到队列中。

CLH

CLH指的是:三位创作者的名字简称:Craig、Landin and Hagersten (CLH)。是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程仅仅在本地变量上自旋,它不断轮询前驱的状态,假设发现前驱释放了锁就结束自旋。

AQS中的队列是CLH变体的虚拟双向队列(FIFO),AQS是通过将每条请求共享资源的线程封装成一个节点来实现锁的分配。

学新通

AQS支持独占锁(exclusive)和共享锁(share)两种模式。

  1. 独占锁:只能被一个线程获取到(Reentrantlock)。
  2. 共享锁:可以被多个线程同时获取(CountDownLatch,ReadWriteLock)。

无论是独占锁还是共享锁,本质上都是对AQS内部的一个变量state的获取。state是一个原子的int变量,用来表示锁状态、资源数等。

![](F:/工作/资料/Android引流资料(1)(1)/23年最新面试题/面试题库/第4章 Java并发编程面试题汇总/images/2-16336110533712.png)

同步队列的作用是:当线程获取资源失败之后,就进入同步队列的尾部保持自旋等待,不断判断自己是否是链表的头节点,如果是头节点,就不断参试获取资源,获取成功后则退出同步队列。

条件队列是为Lock实现的一个基础同步器,并且一个线程可能会有多个条件队列,只有在使用了Condition才会存在条件队列。

AQS中包含一个内部类:Node。该内部类是一个双向链表,保存前后节点,然后每个节点存储了当前的状态waitStatus、当前线程thread。同步队列和条件队列都是由一个个Node组成的。

 static final class Node {
        static final Node EXCLUSIVE = null;

        //当前节点由于超时或中断被取消
        static final int CANCELLED =  1;
     
        //表示当前节点的前节点被阻塞
        static final int SIGNAL    = -1;
        
        //当前节点在等待condition
        static final int CONDITION = -2;
      
        //状态需要向后传播
        static final int PROPAGATE = -3;
        
        volatile int waitStatus;
        
        volatile Node prev;
        volatile Node next;
        volatile Thread thread;

        Node nextWaiter;

        final boolean isShared() {
            return nextWaiter == SHARED;
        }

        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }

        Node() {    // Used to establish initial head or SHARED marker
        }

        Node(Thread thread, Node mode) {     // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }

        Node(Thread thread, int waitStatus) { // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }

独占模式下获取资源:

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

acquire(int arg)首先调用tryAcquire(arg)尝试直接获取资源,如果获取成功,因为与运算的短路性质,就不再执行后面的判断,直接返回。tryAcquire(int arg)的具体实现由子类负责。如果没有直接获取到资源,就将当前线程加入等待队列的尾部,并标记为独占模式,使线程在等待队列中自旋等待获取资源,直到获取资源成功才返回。如果线程在等待的过程中被中断过,就返回true,否则返回false。

如果acquireQueued(addWaiter(Node.EXCLUSIVE), arg)执行过程中被中断过,那么if语句的条件就全部成立,就会执行selfInterrupt();方法。因为在等待队列中自旋状态的线程是不会响应中断的,它会把中断记录下来,如果在自旋时发生过中断,就返回true。然后就会执行selfInterrupt()方法,而这个方法就是简单的中断当前线程Thread.currentThread().interrupt();其作用就是补上在自旋时没有响应的中断。

可以看出在整个方法中,最重要的就是acquireQueued(addWaiter(Node.EXCLUSIVE), arg)。我们首先看Node addWaiter(Node mode)方法,顾名思义,这个方法的作用就是添加一个等待者,根据之前对AQS中数据结构的分析,可以知道,添加等待者就是将该节点加入等待队列。

private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        //尝试快速入队
        if (pred != null) { //队列已经初始化
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node; //快速入队成功后,就直接返回了
            }
        }
        //快速入队失败,也就是说队列都还没初始化,就使用enq
        enq(node);
        return node;
    }
    
    //执行入队
     private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
            //如果队列为空,用一个空节点充当队列头
                if (compareAndSetHead(new Node()))
                    tail = head;//尾部指针也指向队列头
            } else {
                //队列已经初始化,入队
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;//打断循环
                }
            }
        }
    }
final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();//拿到node的上一个节点
                //前置节点为head,说明可以尝试获取资源。排队成功后,尝试拿锁
                if (p == head && tryAcquire(arg)) {
                    setHead(node);//获取成功,更新head节点
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                //尝试拿锁失败后,根据条件进行park
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    //获取资源失败后,检测并更新等待状态
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
            //如果前节点取消了,那就往前找到一个等待状态的接待你,并排在它的后面
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
    //阻塞当前线程,返回中断状态
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

公平锁的实现

在并发环境中,每个线程在获取锁时会先查看此锁维护的等待队列,如果为空,或者当前线程是等待队列的第一个,就占有锁,否则就会加入到等待队列中,以后会按照FIFO的规则从队列中取到自己。公平锁的优点是等待锁的线程不会饿死。缺点是整体吞吐效率相对非公平锁要低,等待队列中除第一个线程以外的所有线程都会阻塞,CPU唤醒阻塞线程的开销比非公平锁大。

protected final boolean tryAcquire(int acquires) {
     final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {//状态为0表示可以加锁
                if (!hasQueuedPredecessors() && //hasQueuedPredecessors表示之前的线程是否有在排队的,这里加了!表示没有排队
                    compareAndSetState(0, acquires)) { //那么就去尝试cas state
                    setExclusiveOwnerThread(current); //如果cas成功设置排他线程为当前线程,表示成功得到锁
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {//如果当前的排他线程是当前线程,表示是重入
                int nextc = c   acquires; //重入计数器增加
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);//因为已经获得锁了,所以不用cas去设,直接设值就行
                return true;
            }
            return false;
}

非公平锁的实现

直接尝试占有锁,如果尝试失败,就再采用类似公平锁那种方式。非公平锁的优点是可以减少唤起线程的开销,整体的吞吐效率高,因为线程有几率不阻塞直接获得锁,CPU不必唤醒所有线程。缺点是处于等待队列中的线程可能会饿死,或者等很久才会获得锁。

final boolean nonfairTryAcquire(int acquires) {
    // 获取当前线程
    final Thread current = Thread.currentThread();
    // 获取当前state的值
    int c = getState(); 
    if (c == 0) {
      // 看看设置值是否能成功
            if (compareAndSetState(0, acquires)) {
           // 则将当前线程设置为独占线程
            setExclusiveOwnerThread(current);
            return true;
        }
    }
 // 返回由setExclusiveOwnerThread设置的最后一个线程;如果从不设置,则返回null 
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c   acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        // 设置state的值
        setState(nextc);
        return true;
    }
    return false;
}

释放锁实现

释放锁代码分析:尝试释放此锁。如果当前线程是此锁的持有者,则保留计数将减少。 如果保持计数现在为零,则释放锁定。 如果当前线程不是此锁的持有者,则抛出IllegalMonitorStateException。

public void unlock() {
    sync.release(1);
}

sync.release(1) 调用的是AbstractQueuedSynchronizer中的release方法

## AbstractQueuedSynchronizer
public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

分析tryRelease(arg)方法,tryRelease(arg)该方法调用的是ReentrantLock中

protected final boolean tryRelease(int releases) {
// 获取当前锁持有的线程数量和需要释放的值进行相减
    int c = getState() - releases; 
    // 如果当前线程不是锁占有的线程抛出异常
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    // 如果此时c = 0就意味着state = 0,当前锁没有被任意线程占有
    // 将当前所的占有线程设置为空
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    // 设置state的值为 0
    setState(c);
    return free;
}

如果头节点不为空,并且waitStatus != 0,唤醒后续节点如果存在的话。这里的判断条件为什么是h != null && h.waitStatus != 0?因为h == null的话,Head还没初始化。初始情况下,head == null,第一个节点入队,Head会被初始化一个虚拟节点。所以说,这里如果还没来得及入队,就会出现head == null 的情况。

  1. h != null && waitStatus == 0 表明后继节点对应的线程仍在运行中,不需要唤醒
  2. h != null && waitStatus < 0 表明后继节点可能被阻塞了,需要唤醒
private void unparkSuccessor(Node node) {
// 获取头结点waitStatus
    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);
// 获取当前节点的下一个节点
    Node s = node.next;
//如果下个节点是null或者下个节点被cancelled,就找到队列最开始的非cancelled的节点
    if (s == null || s.waitStatus > 0) {
        s = null;
        // 就从尾部节点开始找往前遍历,找到队列中第一个waitStatus<0的节点。
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
  // 如果当前节点的下个节点不为空,而且状态<=0,就把当前节点唤醒
    if (s != null)
        LockSupport.unpark(s.thread);
}

为什么要从后往前找第一个非Cancelled的节点?

private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
	return node;
}

从此处可以看到,节点入队并不是原子操作,也就是说,node.prev = pred, compareAndSetTail(pred, node) 这两个地方可以看作Tail入队的原子操作,但是此时pred.next = node;还没执行,如果这个时候执行了unparkSuccessor方法,就没办法从前往后找了,所以需要从后往前找。还有一点原因,在产生CANCELLED状态节点的时候,先断开的是Next指针,Prev指针并未断开,因此也是必须要从后往前遍历才能够遍历完全部的Node。 所以,如果是从前往后找,由于极端情况下入队的非原子操作和CANCELLED节点产生过程中断开Next指针的操作,可能会导致无法遍历所有的节点。所以,唤醒对应的线程后,对应的线程就会继续往下执行。

更多Android进阶指南 可以详细Vx关注公众号:Android老皮 解锁 《Android十大板块文档》

1.Android车载应用开发系统学习指南(附项目实战)

2.Android Framework学习指南,助力成为系统级开发高手

3.2023最新Android中高级面试题汇总 解析,告别零offer

4.企业级Android音视频开发学习路线 项目实战(附源码)

5.Android Jetpack从入门到精通,构建高质量UI界面

6.Flutter技术解析与实战,跨平台首要之选

7.Kotlin从入门到实战,全方面提升架构基础

8.高级Android插件化与组件化(含实战教程和源码)

9.Android 性能优化实战 360°全方面性能调优

敲代码不易,关注一下吧。ღ( ´・ᴗ・` ) 🤔

这篇好文章是转载于:学新通技术网

  • 版权申明: 本站部分内容来自互联网,仅供学习及演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,请提供相关证据及您的身份证明,我们将在收到邮件后48小时内删除。
  • 本站站名: 学新通技术网
  • 本文地址: /boutique/detail/tanhgahhcj
系列文章
更多 icon
同类精品
更多 icon
继续加载